Nine-ton Block of Sandstone Unveils Six Utahraptor Remains.

Archaeologists in Moab, Utah, have discovered the remains of six Utahraptors within a nine-ton block of sandstone. This discovery is regarded as the biggest fossil find ever of the Utahraptor, a giant predatory theropod dinosaur who roamed the earth during the early Cretaceous period. The massive excavation, led by Utah state palaeontologist James Kirkland, has been undertaken over the past decade upon the Utah Mountain.

The nine-ton sandstone block revealed the skeletal remains of a 16ft-long adult, four juveniles and a baby Utahraptor which was approximately 3ft long from snout to tail.

The nine-ton sandstone block revealed the skeletal remains of a 16ft-long adult, four juveniles and a baby Utahraptor which was approximately 3ft long from snout to tail.

The sandstone block revealed the skeletal remains of a 16ft-long adult, four juveniles and a baby Utahraptor which was approximately 3ft long from snout to tail. The block also revealed bones belonging to a beaked, bipedal herbivore known as an Iguanadon. It is hoped that the Utahraptors died whilst hunting as a group, which may provide evidence of pack hunting. Another hypothesis claims that the Utahraptors may have wandered into quicksand and died at different times, due to the fossils being stacked 3ft thick.

It is hoped that the Utahraptors died whilst hunting as a group, which may provide evidence of pack hunting.

It is hoped that the Utahraptors died whilst hunting as a group, which may provide evidence of pack hunting.

Kirkland thinks that the Utahraptors were enticed by the promise of the unwary Iguanodon which stumbled into the quicksand itself. Unable to move, bellowing and struggling, the trapped Iguanodon lured the Utahraptors who then, one after another, tried to ‘nab an easy meal’ only ending up stuck and meeting the same fate as the Iguanodon.

Utahraptors are the largest known member of the family Dromaeosauridae, with some specimens reaching 23ft-long weighing around 500kg. They bare a resemblance to their ‘cousins’ – the Velociraptor but are covered in feathers, with a sickle like claw on each of their second toes.

Size comparison of an average sized adult Utahraptor with an adult male human (5.9ft).

Size comparison of an average sized adult Utahraptor with an adult male human (5.9ft).

Quick Tips – Common Questions: Can physical activities undertaken during life be detected on skeletal remains?

This is a Quick Tips post providing a basic answer to a commonly asked question often faced within the field of archaeology and anthropology.

Can physical activities undertaken during life be detected on skeletal remains? Yes they can.

Numerous activities, such as hunting, gathering, exercise and more obviously fighting, can inflict damage or adaptations onto to a skeletal system. Some physical activities can be easily identified by due to the damage they can produce to the skeleton, i.e. fighting, whereas the skeletons adapt to strain caused by sport or a daily activity can be harder to detect.

Stock (2006) investigated hunter-gatherer postcranial robusticity relative to patterns of mobility and climatic adaption. In this study, Stock took four collections of known hunter-gatherers skeletal remains along with the associated data of the environmental factors in the population area and the terrestrial mobility. In every analysis conducted, the effective environmental temperature was found to be negatively correlated with strength. Stock concluded that hunter-gatherers from colder climates tend to have stronger long bone diaphysis, than the groups from warmer regions. Although in contrast, the partial correlations between mobility and robusticity are positive; suggesting that activity has a consistently positive relationship with diaphyseal strength. This study indicates that even the simple ‘easy’ activity of hunting and gathering can affect diaphyseal strength of a skeleton and that the activity can be detected.

Exercise is also one of the most common factors to cause a skeleton to adapt. A recent study by Shaw (2009) was able to correctly predict an athlete’s chosen sport from quantifying the soft tissue properties and bone morphology. In Shaw’s study he focused on examining modern athletes (runners, field hockey players, swimmers, and cricketers) and a control group. Using peripheral quantitative computed tomography (pQCT), Shaw quantified the relationship between the amount of muscle and other soft tissues and the morphology of the bones along the midshaft of the arm, forearm and lower legs. This study concluded that Shaw could correctly identify an athlete’s chosen sport from examining a skeletal system and quantifying the bone mass and strength. Shaw concluded that the changes to the bones structural properties were from the strain of daily habitual training from the athlete’s young age.

These two modern studies, Stock (2006) and Shaw (2009), perfectly highlight how physical activities can be detected on skeletal remains.  But these morphological changes can be harder to detect than more brutal activities such as fighting. This is because war and fights leave tell-tale marks on the skeletons which are detectable from eye rather than quantitating data. Violence within a population whether its ritual/habitual, in times of war or domestic can be easily identified from the fractures and dents a bone receives.

A recent NAI (Non-accidental Injury) study from Day et al (2006), highlighted how skeletal remains could indicate bone trauma caused by violence. The study retrospectively observed cases of suspected NAI injuries sustained by children from X-rays obtained at an Edinburgh hospital. The bone fractures, mostly found on the skull and long bones, were suspected to be cause by domestic abuse and evidence of blunt force trauma was observed in numerous cases. Even though this is a recent study conducted on NAI instances, it does appropriately show how violence can inflict damage onto skeletal remains. An archaeological skeleton could show healed/unhealed fractures sustained via a physically demanding activity which was violent in nature, such as war or ritual fighting.

References:

Day, F. Clegg, S. McPhillips, M. Mok, J. 2006. A retrospective case series of skeletal surveys in children with suspected non-accidental injury. Journal of Clinical Forensic Medicine. 13, 12. 55-59.

Shaw, C. 2009. ‘Putting flesh back onto the bones?’ Can we predict soft tissue properties from skeletal and fossil remains?. Journal of Human Evolution. 59, 5. 484-492.

Stock, J.T. 2006. Hunter-Gatherer Postcranial Robusticity Relative to Patterns of Mobility, Climatic Adaption and Selective Tissue Economy. American Journal of Physical Anthropology. 131, 2. 194-203.

 

200-Million-Year-Old Ichthyosaur Complete Fossil Discovered.

An ichthyosaur fossil, dating back to around 200 million years, has been discovered on a beach in Penarth, South Wales.

The 7ft fossil, weighing in at 132lbs, was unearthed on a beach in Penarth, South Wales.

The 7ft fossil, weighing in at 132lbs, was unearthed on a beach in Penarth, South Wales.

The 7ft fossil, weighing in at 132lbs, was unearthed by beach walker Jonathan Bow, who spent a whole day excavating it. Cindy Howells, a palaeontologist from the National Museum of Wales said: ‘The ichthyosaur is potentially a very, very important find because it is so complete.’

Ichthyosaur Fossil 3

Ichthyosaur Fossil 2-Head

Ichthyosaurs are commonly referred to as fish lizards, but are in fact large carnivorous marine reptiles varying from 3ft to 52ft in length. They thrived during the Mesozoic era, and are thought to have made their first appearance around 250 million years ago.

It is thought that the ichthyosaur population increased during the later Triassic and early Jurassic Period, but then became replaced by the plesiosaurs during the later Jurassic and Cretaceous Period. By the Late Cretaceous period, ichthyosaurs became extinct.

Ichthyosaurs are commonly referred to as fish lizards, but are in fact large carnivorous marine that thrived during the Mesozoic era.

Ichthyosaurs are commonly referred to as fish lizards, but are in fact large carnivorous marine that thrived during the Mesozoic era.

Quick Tips: Archaeological Techniques – Ground Penetrating Radar.

Ground-penetrating or probing radar (GPR) is a non-destructive, geophysical method that uses radar pulses to image the subsurface. The principles of ground-penetrating radar are similar to reflection seismology, except that electromagnetic energy is used instead of acoustic energy, and reflections appear at boundaries with different dielectric constants instead of acoustic impedances.

Ground-penetrating radar was applied in the 1940’s after the use of radar to detect enemy aircraft’s during WW2. In 1960’s, due to the progression of this surveying technique, it was primarily used to probe and explore the polar ice. By using GPR in relation to these two applications, a P-38 lightening fighter plane was pinpointed within the ice surrounding Greenland in 1992. The P-38 was originally part of a squadron of six fighters and two B17 Flying Fortresses that ditched just over Greenland in 1942. The P-38 fighter plane was later recovered from a depth of 75m.

How does Ground-penetrating radar work? 

GPR works by emitting high frequency, usually polarized, radio waves via antennas, into the ground. If the area being surveyed contains artefacts or hidden archaeology; these electromagnetic waves are reflected back. When the wave hits a buried object or a boundary with different di-electric constants, the receiving antenna records the variations in the reflected return signal. These returned signals are then collected and interpreted to identify any hidden archaeology within the surveyed area.

N.B. Higher frequencies do not penetrate the ground as far as lower frequencies do, but these higher frequencies give a better resolution. Also the radar emitting antennas are usually in contact with the ground for the strongest signal strength; however, GPR air launched antennas can be used above the ground.

Advantages of Ground-penetrating Radar:

  • GPR is non-destructive and not invasive – helping to preserve the archaeology/landscape.
  • GPR can be used in a variety of media/sediments including; rock, soil, ice, fresh water, pavements and structures.
  • It can detect objects, changes in material, and voids/cracks in the ground.

Disadvantages of Ground-penetrating Radar:

  • The depth range of GPR is limited by the electrical conductivity of the ground. As conductivity increases, the penetration depth decreases. This is because the electromagnetic energy is more quickly dissipated into heat, causing a loss in signal strength at depth.
  • In moist and/or clay-laden soils and soils with high electrical conductivity, penetration is sometimes only a few centimetres.
  • Metal can interfere with the electromagnetic radiation – this can give false results.

References:

Balme, J., Paterson, A. 2006. Archaeology in Practice: A Student Guide to Archaeological Analayses. Oxford, UK: Blackwell Publishing. Pg 218.

Renfrew, C., Bahn, P. 1991. Archaeology: Theories, Methods and Practice. London, UK: Thames & Hudson. Pg 249-53.

Click here to read more Quick Tip posts!

Image

All Things AAFS! Facebook Page

All Things AAFS! Facebook Page

AAFSFacebook

Due to the increasing popularity of our blog posts on Facebook, I have created a new page where all our blog posts will be automatically published – which will mean easier sharing for you! Give us a ‘Like’ if you want to follow our blog posts more casually without having to link your email up for updates.

Click here to be taken directly to our new Facebook page!

We also have a twitter page, where you can follow us for updates!

AAFS Twitter

Click the above image to be taken to our Twitter page!

Share Post Sign

New Evidence Supports Conflict is Not Innate.

In a previous post – which can be found by clicking here – I had examined whether conflict was innate for humans after a lecture in University, which I concluded was true by analysing different theories but stressed that conflict only becomes active due to a stimulus. That stimulus could either be biological, seen in aggressive mating, or environmental, such as intraspecific/intrespecific competition. But a recent study, noticed by the BBC has put a spanner in the works, as the leading researcher – Patrik Soderberg – says that conflict isn’t actually innate.

Soderberg’s research based its findings by studying isolated tribes from numerous places around the world which had been studied over the last century. By using modern primitive isolated tribes they were able to have a sample which was cut off from the modern day life and utilising the wild plants and animals that inhibit their environment, surviving like the much older hunter-gatherers.

Ancient hunter-gatherer cave art.

Ancient hunter-gatherer cave art.

Using these modern day tribes as an analogy for the earlier societies that ruled the lands, they assessed and analysed any violent deaths. They found that in their sample populations there were 148 violent deaths, but very few were caused by widespread war. Most of the violent deaths were caused by personal motives ranging from family feuds or adultery.

Soderberg has admitted that these modern tribes were not a ‘perfect model’ for the ancient civilisations but said that due to vast significant similarities they did allow for an insight into the past. From this study he concluded that war may have developed later as the hunter gathers became more agriculture orientated and territorial with a complex social structure. “As humans settled down, then war becomes more dominant and present. For these primitive societies, war has not yet entered the picture,”.

References:

BBC. 2013. Primitive human society ‘not driven by war’. BBC News. Available here.

Soderberg, P., Fry, D. 2013. Latest Skirmish Over Ancestral Violence Strikes Blow for Peace. Science. 341, 6143. P224. Here is a link to view the .pdf of this very interesting article.