Quick Tips: Identifying Dental Diseases – Dental Caries.  

Quick Tips: Identifying Dental Diseases – Dental Caries.  

In our previous Quick Tip post on identifying dental diseases, we gave a basic overview on the disease dental/enamel hypoplasia. If you haven’t read it, you can find it by clicking here.

Dental caries, also known as tooth decay, is thought to be the most common of dental diseases. This is due to it being recorded within archaeological populations more frequently than other dental diseases. It is an infectious and spreadable disease, which is the result of the fermentation of carbohydrates by bacteria that are present within teeth plaque. Its appearance can sometimes be observed as small opaque spots on the crowns of teeth, to large gaping cavities.

dental caries

Dental caries appearance can sometimes be observed as small opaque spots on the crowns of teeth, to large gaping cavities.

Dental caries occurs when sugars from the diet, particularly sucrose, are fermented by the bacteria Lactobacilus acidophilus and Streptococcys mutans, which are found within the built up plaque. This fermentation process causes acids to be produced, which in turn break down and demineralises teeth leaving behind cavities.

Powell (1985) divided the causes of dental caries into different areas, which are;

  • Environmental factors, the trace elements in food and water (i.e fluoride in water sources may protect against caries).
  • Pathogenic factors, the bacterial causing the disease.
  • Exogenous factors, from diet and oral hygiene.
  • Endogenous factors, the shape and structure of teeth.

Any part of the tooth structure that allows the accumulation of plaque and food debris can be susceptible to caries. This means that the crowns of the tooth (especially with molars and premolars due to the fissures), and the roots of the teeth are the areas most commonly affected by dental caries.


Lukacs, J.R. 1989. Dental paleopathology: methods for reconstructing dietary patterns. In M.Y. Iscan and K.A.R. Kennedy (eds), Reconstruction of life from the skeleton. New York, Alan Liss, pp. 261-86.

Powell, M.L. 1985. The analysis of dental wear and caries for dietary reconstruction. In R.I. Gilbert and J.H. Mielke (eds), Analysis of prehistoric diets. London, Academic Press, pp. 307-38.

Ubelaker, D.H. 1989. Human Skeletal Remains: Excavation, Analysis, Interpretation (2nd Ed.). Washington, DC: Taraxacum.

White, T.D., Folkens, P.A. 2005. The Human Bone Manual. San Diego, CA: Academic Press. Pg 392-398.

This is the second post of the Quick Tips series on identifying dental diseases. The next post in this series will focus on how to identify calculus (calcified plague), and highlight the cause of this dental disease. To read more Quick Tips in the meantime, click here.

If you’re new to the realm of archaeological, anthropological and forensic sciences (AAFS), or are a student needing sturdy and reliable references, or wondering “what archaeology or anthropology textbooks are good? Check out our new ‘Useful Literature’ page for suggestions from peers and professors!

Quick Tips – Common Questions: What can an anthropologist tell from the examination of teeth regarding either forensic identification of individuals or understanding past populations?

This is a Quick Tips post providing a basic answer to a commonly asked question often faced within the field of archaeology and anthropology.

An anthropologist can obtain a wide and varied collection of information from examining teeth. Information such as paleodiets and palaeoenvironments can be learnt from studying a population, or from studying an individual sample you can identify how old the person was at time of death or whether that person was pregnant/ill. These examples are just the tip of the iceberg on what you can learn from dentition.


An anthropologist can obtain a wide and varied collection of information from examining teeth, ranging from palaeodiets and palaeoenvironmental information to age of death.

From studying a large population dentition sample, a picture can be painted of their past diets, current diets and palaeoenvironments. Isotopes play a huge part in conducting research into palaeodiets and palaeoenvironments.

Isotopes are deposited into the teeth of an individual/population from food sources or environment. A tooth can provide isotopic information from the past 20yrs of the individual’s life. The enamel and dentine can be examined to analyse the isotopic values that will pinpoint an origin of a population or food sources. The carbon and nitrogen isotope compositions found within the enamel are used to reconstruct diet and the oxygen isotopes are used to determine the geographic origin of the food source. The carbon isotopes are absorbed from the diet of the animals that are sources and the oxygen isotopes from the water that the population consume. These isotopic values are vital in helping an anthropologist understand the local ecosystem a population exploited and whether a population migrated to numerous locations which caused changes in the available diet.

The cementum of a tooth can highlight important information about a person which can be used for forensic identification; this information could give an approximate age of death. An example of this application is seen in Kagerer and Grupe (2000) study where they obtained 80 freshly extracted teeth and investigated the incremental lines in acellular extrinsic fibre cementum. From studying the cementum, they were able to determine the age of the patient by comparing it to detailed queries of the patients life history. This study also identified patients who were pregnant. Kagerer and Grupe (2000) concluded that if there was a presence of hypo-mineralised incremental lines on the extracted tooth, the patient was pregnant. This is due to the pregnancies influence on calcium metabolism. A confliction with this is that hypo-mineralized lines can also appear when a skeletal trauma or renal illness was present.

By looking at the dentition of molars the age of the skeleton can be estimated. A recent study by Mesotten, et al. (2002) highlighted the application of forensic odontology. Mesotten, et al’s methodology consisted of examining 1175 orthopantomograms which belonged to patients who were of Caucasian origin and were aged between 16 and 22years. From their investigation Mesotten, et al. were able to conclude that from studying the molars, it was possible to age Caucasian individuals with a regression formula with a standard deviation of 1.52 or 1.56 years for males and females, respectively, if all four third molars were available. This could play a fundamental role in identifying a missing person by estimating the decease’s age and seeing if its estimate matches the individual.

Although the studies from Mesotten, et al (2002) and Kagerer and Grupe (2000) have been written about and applied to individual cases, their methodology and conclusions can be applied to a past population if a group of skeletons were found with preserved teeth. The individual’s age of death can be used as quantitative data, alongside other individuals from the same sample, to figure out a past population’s life expectancy.


Kagerer, P. Grupe, G. 2000. Age-at-death diagnosis and determination of life-history parameters by incremental lines in human dental cementum as an identification aid. Forensic Science International. 118, 1. 75-82.

Mesotten, K. Gunst, K. Carbonez, A. Willems, G. 2002. Dental age estimation and third molars: a preliminary study. Forensic Science International. Volume 129, Issue 2, 110-115

To learn how archaeologists and anthropologists use teeth to age skeletal remains, read our Quick Tips: How To Estimate The Chronological Age of a Human Skeleton – Using Dentition to Age Subadults. Or to read more of our interesting Quick Tips, click here.