Textbook of the Week: The Archaeology of Death and Burial.

Every week we highlight one archaeology/anthropology textbook from our suggested readings, a full list of our suggested resources can be found here, on our Useful Literature page.

Archaeology_of_Death_and_Burial

The Archaeology of Death and Burial (UK/Europe)
The Archaeology of Death and Burial (Texas A&M University Anthropology Series) (US/Worldwide Link)
by Michael Parker Pearson. Rating – ****
“I picked this book up pretty cheap, and it was worth it! Especially if you’re into weird, morbid but interesting accounts of burial rituals – this book contains examples ranging from ancient world to modern times.”

 

If you’re new to the realm of archaeological, anthropological and forensic sciences (AAFS), or are a student needing sturdy and reliable references, or wondering “what archaeology or anthropology textbooks to buy? Check out our new ‘Useful Literature’ page!

Advertisements

First Early Iron Age Burials Found In Dorset.

Archaeologists have discovered crouched burials of three skeletons, which are believed to be from the Bronze or Iron Age in Long Bredy, Dorset.  They were uncovered during a watching brief, being undertaken by the National Trust, on routine drainage works at an 18th century Dorset cottage.

The skeletal remains, thought to have been between eighteen and twenty five years old, have been radiocarbon dated which suggests they were buried between eight and six hundred BC. Due to the thick soils in the area, archaeologists tend to only stumble upon archaeological finds by accident whilst carrying out maintenance.

Dorset Crouched Burials

Archaeologists have discovered crouched burials of three skeletons, which are believed to be from the Bronze or Iron Age in Long Bredy, Dorset. © Martin Papworth

This find is the first burial from this time era that has been discovered in Dorset, making it a very significant find for the region. “There are no previous burials from that time in Dorset so it is a very significant find from the period with little evidence for the disposal of the dead,” says Martin Papworth, one of the archaeologists from the National Trust. “It’s an important window into the past, the first clues of the people who lived in Dorset at the time.”

To read the Unusual-ology post on the Ancient Egyptian use of lettuce as an aphrodisiac, click here, or how male spiders sacrifice themselves to their mate, click here. To learn about the recent vampire burials, and past vampire burials, click here.

 

Unusual-ology: Strange 6,500-year-old Neolithic Burials Discovered in Egypt.

Unusual-ology: Strange 6,500-year-old Neolithic Burials Discovered in Egypt.

A team of archaeologists, led by Jacek Kabaciński from the Polish Academy of Sciences, have discovered the burials of sixty adults in a cemetery in Gebel Ramlah, Egypt.

Egypt Neolithic Burials

The unusual thing about these burials is the discovery of a grave that contained the skeletal remains of two individuals, one of which has deliberate cuts on their femur. These cut marks have not been seen in other Neolithic burials that have been unearthed in North Africa. But this particular grave wasn’t the only odd one they found. Kabaciński’s team found another two unusual graves one which was found to be lined with stone slabs, but it’s the third burial they discovered which is the oddest.

In the third grave, the skeletal remains of a man were found to be covered in pottery fragments, stones and lumps of red dye. Near his head a fragment of a Dorcas gazelle skull was found, which may have been used as a ceremonial headdress. The skeletal remains also showed signs of abnormal bone adhesions and fractures, leading Kabaciński to believe this man may have performed hunting rites.

Quick Tips: Identifying Dental Diseases – Dental Caries.  

Quick Tips: Identifying Dental Diseases – Dental Caries.  

In our previous Quick Tip post on identifying dental diseases, we gave a basic overview on the disease dental/enamel hypoplasia. If you haven’t read it, you can find it by clicking here.

Dental caries, also known as tooth decay, is thought to be the most common of dental diseases. This is due to it being recorded within archaeological populations more frequently than other dental diseases. It is an infectious and spreadable disease, which is the result of the fermentation of carbohydrates by bacteria that are present within teeth plaque. Its appearance can sometimes be observed as small opaque spots on the crowns of teeth, to large gaping cavities.

dental caries

Dental caries appearance can sometimes be observed as small opaque spots on the crowns of teeth, to large gaping cavities.

Dental caries occurs when sugars from the diet, particularly sucrose, are fermented by the bacteria Lactobacilus acidophilus and Streptococcys mutans, which are found within the built up plaque. This fermentation process causes acids to be produced, which in turn break down and demineralises teeth leaving behind cavities.

Powell (1985) divided the causes of dental caries into different areas, which are;

  • Environmental factors, the trace elements in food and water (i.e fluoride in water sources may protect against caries).
  • Pathogenic factors, the bacterial causing the disease.
  • Exogenous factors, from diet and oral hygiene.
  • Endogenous factors, the shape and structure of teeth.

Any part of the tooth structure that allows the accumulation of plaque and food debris can be susceptible to caries. This means that the crowns of the tooth (especially with molars and premolars due to the fissures), and the roots of the teeth are the areas most commonly affected by dental caries.

References:

Lukacs, J.R. 1989. Dental paleopathology: methods for reconstructing dietary patterns. In M.Y. Iscan and K.A.R. Kennedy (eds), Reconstruction of life from the skeleton. New York, Alan Liss, pp. 261-86.

Powell, M.L. 1985. The analysis of dental wear and caries for dietary reconstruction. In R.I. Gilbert and J.H. Mielke (eds), Analysis of prehistoric diets. London, Academic Press, pp. 307-38.

Ubelaker, D.H. 1989. Human Skeletal Remains: Excavation, Analysis, Interpretation (2nd Ed.). Washington, DC: Taraxacum.

White, T.D., Folkens, P.A. 2005. The Human Bone Manual. San Diego, CA: Academic Press. Pg 392-398.

This is the second post of the Quick Tips series on identifying dental diseases. The next post in this series will focus on how to identify calculus (calcified plague), and highlight the cause of this dental disease. To read more Quick Tips in the meantime, click here.

If you’re new to the realm of archaeological, anthropological and forensic sciences (AAFS), or are a student needing sturdy and reliable references, or wondering “what archaeology or anthropology textbooks are good? Check out our new ‘Useful Literature’ page for suggestions from peers and professors!

Quick Tips: Identifying Dental Diseases – Dental/Enamel Hypoplasia.

In our previous Quick Tip post on identifying dental diseases, we gave a basic overview on the different diseases that are observed. If you haven’t read it, you can find it by clicking here.

Dental hypoplasia is a condition that affects the enamel of a tooth. It is characterised by pits, grooves and transverse lines which are visible on the surface of tooth crowns. The lines, grooves and pits that are observed are defects in the enamels development. These defects occur when the enamel formation, also known as amelogenesis, is disturbed by a temporary stress to the organism which upsets the ameloblastic activity. Factors which can cause such stress and therefore disrupt the amelogenesis include; fever, malnutrition, and hypocalcemia.

Figure 1: An example of linear enamel hypoplasia.

Figure 1: An example of linear enamel hypoplasia.

It has been noted that enamel hypoplasia is more regularly seen on anterior teeth than on molars or premolars, and that the middle and cervical portions of enamel crowns tend to show more defects than the incisal third. This is due to the amelogenesis beginning at the occlusal apex of each tooth crown and proceeding rootward, towards where the crown then meets the root at the cervicoenamel line.

Figure 2: Anatomy of a tooth. Note the top third is known as either the occlusal third if in molars, or the incisal third when the tooth is an incisor or canine.

Figure 2: Anatomy of a tooth. Note the top third is known as either the occlusal third if in molars, or the incisal third when the tooth is an incisor or canine.

By studying these incidents of enamel hypoplasia within a population sample, we can be provided with valuable information regarding patterns of dietary stress and disease that may have occurred within the community.

References:

Lukacs, J.R. 1989. Dental paleopathology: methods for reconstructing dietary patterns. In M.Y. Iscan and K.A.R. Kennedy (eds), Reconstruction of life from the skeleton. New York, Alan Liss, pp. 261-86.

Ubelaker, D.H. 1989. Human Skeletal Remains: Excavation, Analysis, Interpretation (2nd Ed.). Washington, DC: Taraxacum.

White, T.D., Folkens, P.A. 2005. The Human Bone Manual. San Diego, CA: Academic Press. Pg 392-398.

This is the second post of the Quick Tips series on identifying dental diseases. The next post in this series will focus on how to identify dental caries and highlight the cause of this dental disease.

To read more Quick Tips in the meantime click here, or to learn about basic fracture types and their characteristics/origins click here!

3-Million Year Old Fossilised Metacarpals Show Evidence of Tool Use.

A recent study has put forward some important evidence of early human ancestors, in particular Australopithecus africanus, wielding tools in a human like fashion dating around 3 to 2-million years ago.

Figure 1: A recent study has put forward some important evidence of early human ancestors, in particular Australopithecus africanus (pictured), wielding tools in a human like fashion dating around 3 to 2-million years ago.

Figure 1: A recent study has put forward some important evidence of early human ancestors, in particular Australopithecus africanus (pictured), wielding tools in a human like fashion dating around 3 to 2-million years ago . ©Shaen Adey, Gallo Images/Corbis.

The study, led by Matthew Skinner from the University of Kent, compared the internal structures of the hand bones from the Australopithecus africanus and several Pleistocene hominins, which were previously considered to have not engaged in habitual tool use.

Skinner et al, found that they all have a human trabecular (spongy) bone pattern in the metacarpals, and this is consistent with the “forceful opposition of the thumb and fingers typically adopted during tool use”.

Top row: First metacarpals of the  various hominins.  Bottom row: 3-D renderings from the micro-CT scans showing a cross-section of the bone structure inside.

Figure 2: Top row: First metacarpals of the various hominids.
Bottom row: 3-D renderings from the micro-CT scans showing a cross-section of the bone structure inside. ©T.L. Kivell

The evolution of the hand, mainly the development of opposable thumbs, has been hailed as the key to success for early humans. It is thought that without the improvement of our grip and hand posture, tool technology could not have emerged and developed as well as it has.

This piece of research will provide a new discussion into when the first appearance of habitual tool use occurred in prehistory, as this study’s evidence of modern human-like tool use is dated 0.5-million years earlier than the first archaeological evidence of stone tools.

References:

Skinner, M. Stephens, N. Tsegai, Z. Foote, A. Nguyen, N. Gross, T. Pahr, D. Hublin, J. Kivell, T. 2015. Human-like hand use in Australopithecus africanusScience. 347, 6220. p395-399.
You can view this paper by clicking here.

 

If you’re a student – check out our ‘Quick Tips’ posts where we breakdown topics of AAFS into bite-sized chunks. We’re currently covering how to age and how to estimate the biological sex of skeletal remains, and also how to identify a variety of fracture types

Give-away: Etsy Handmade Archaeology/Anthropology Tool Roll Launch.

Etsy Header2

To celebrate the launch of our Etsy shop, which you can visit here https://www.etsy.com/uk/shop/AllThingsAAFS, we are giving away one of our hand-crafted ‘Archaeology Traveller’ small finds/anthropology tool kits (pictured below)!

Image

 The tool kit includes:

12x Stainless Steel Small Finds Archaeology Tools!
4x Tweezers – to allow you to delicately handle finds!
1x Sharpie permanent marker pen – for labelling tool find trays or bags!
1x Mechanical Pencil – to help you write when the weather is gloomy!
1x HB Pencil – to allow you to sketch your finds, and with extra room to add your own personal tools.
When opened the size of this tool roll is approximately 28x21cm, and will roll up to be 9x21cm.

To be in for a chance of winning this archaeology tool roll, just visit our competition Facebook post by clicking here and then ‘Like and Share’ it! Don’t forget to Like our page to receive updates from us!

Competition ends at 12:00pm on 12th March 2014, and the winner will be selected on the 14th March!