Fourth century settlement unearthed in Japan.

Archaeologists excavating in Nara Prefecture, Japan have discovered the remains of pit houses and ditches that indicate the boundaries of a settlement.

This fourth century settlement was unearthed at the Nakanishi ruin archaeological site. It is believed that the newly revealed site could have been built alongside the nearby Akitsu ruins, which if proves to be true, would make this one of the largest fourth century settlements in Japan.

Nakanishi ruins

Archaeologists excavating in Nara Prefecture, Japan have discovered the remains of pit houses and ditches that indicate the boundaries of a settlement.

Fumiaki Imao, senior researcher at the Archaeological Institute of Kashihara has said that “the site occupies a prominent area,” and that it may have been used for rituals that were carried out by the early Yamato imperial court. Little is known about the actions of the Yamato imperial court during the fourth century, but archaeologists hope that their continuing excavation of this site will be able to offer fresh insights to the rituals that occurred.

Advertisements
Unusual-ology: Strange 6,500-year-old Neolithic Burials Discovered in Egypt.

Unusual-ology: Strange 6,500-year-old Neolithic Burials Discovered in Egypt.

A team of archaeologists, led by Jacek Kabaciński from the Polish Academy of Sciences, have discovered the burials of sixty adults in a cemetery in Gebel Ramlah, Egypt.

Egypt Neolithic Burials

The unusual thing about these burials is the discovery of a grave that contained the skeletal remains of two individuals, one of which has deliberate cuts on their femur. These cut marks have not been seen in other Neolithic burials that have been unearthed in North Africa. But this particular grave wasn’t the only odd one they found. Kabaciński’s team found another two unusual graves one which was found to be lined with stone slabs, but it’s the third burial they discovered which is the oddest.

In the third grave, the skeletal remains of a man were found to be covered in pottery fragments, stones and lumps of red dye. Near his head a fragment of a Dorcas gazelle skull was found, which may have been used as a ceremonial headdress. The skeletal remains also showed signs of abnormal bone adhesions and fractures, leading Kabaciński to believe this man may have performed hunting rites.

Quick Tips: Identifying Dental Diseases – Dental Caries.  

Quick Tips: Identifying Dental Diseases – Dental Caries.  

In our previous Quick Tip post on identifying dental diseases, we gave a basic overview on the disease dental/enamel hypoplasia. If you haven’t read it, you can find it by clicking here.

Dental caries, also known as tooth decay, is thought to be the most common of dental diseases. This is due to it being recorded within archaeological populations more frequently than other dental diseases. It is an infectious and spreadable disease, which is the result of the fermentation of carbohydrates by bacteria that are present within teeth plaque. Its appearance can sometimes be observed as small opaque spots on the crowns of teeth, to large gaping cavities.

dental caries

Dental caries appearance can sometimes be observed as small opaque spots on the crowns of teeth, to large gaping cavities.

Dental caries occurs when sugars from the diet, particularly sucrose, are fermented by the bacteria Lactobacilus acidophilus and Streptococcys mutans, which are found within the built up plaque. This fermentation process causes acids to be produced, which in turn break down and demineralises teeth leaving behind cavities.

Powell (1985) divided the causes of dental caries into different areas, which are;

  • Environmental factors, the trace elements in food and water (i.e fluoride in water sources may protect against caries).
  • Pathogenic factors, the bacterial causing the disease.
  • Exogenous factors, from diet and oral hygiene.
  • Endogenous factors, the shape and structure of teeth.

Any part of the tooth structure that allows the accumulation of plaque and food debris can be susceptible to caries. This means that the crowns of the tooth (especially with molars and premolars due to the fissures), and the roots of the teeth are the areas most commonly affected by dental caries.

References:

Lukacs, J.R. 1989. Dental paleopathology: methods for reconstructing dietary patterns. In M.Y. Iscan and K.A.R. Kennedy (eds), Reconstruction of life from the skeleton. New York, Alan Liss, pp. 261-86.

Powell, M.L. 1985. The analysis of dental wear and caries for dietary reconstruction. In R.I. Gilbert and J.H. Mielke (eds), Analysis of prehistoric diets. London, Academic Press, pp. 307-38.

Ubelaker, D.H. 1989. Human Skeletal Remains: Excavation, Analysis, Interpretation (2nd Ed.). Washington, DC: Taraxacum.

White, T.D., Folkens, P.A. 2005. The Human Bone Manual. San Diego, CA: Academic Press. Pg 392-398.

This is the second post of the Quick Tips series on identifying dental diseases. The next post in this series will focus on how to identify calculus (calcified plague), and highlight the cause of this dental disease. To read more Quick Tips in the meantime, click here.

If you’re new to the realm of archaeological, anthropological and forensic sciences (AAFS), or are a student needing sturdy and reliable references, or wondering “what archaeology or anthropology textbooks are good? Check out our new ‘Useful Literature’ page for suggestions from peers and professors!

Unusual-ology: Wasn’t Curiosity That Killed The Baboon… – Ancient Egyptian Pet Cemetery Found.

A team of archaeologists in Hierakonpolis have unearthed an ancient Egyptian animal cemetery, which has uncovered the remains of numerous exotic animals. The skeletal remains of numerous baboons, hippos, and other animals, have depicted a dark past for these companions of the ancient Egyptian elite.

The skeletal remains of the pets, thought to have been buried more than five thousand years ago, revealed numerous broken bones and fractures, which points to them having received harsh beatings. At least two of the baboon skeletons that were discovered had parry fractures, a common fracture of the ulna, caused when a victim is trying to shield their heads from damaging bones.

The skeletal remains of the pets, thought to have been buried more than five thousand years ago, revealed numerous broken bones and fractures, which points to them having received harsh beatings.  ©Renee Friedman

The skeletal remains of the pets, thought to have been buried more than five thousand years ago, revealed numerous broken bones and fractures, which points to them having received harsh beatings. ©Renee Friedman

The skeletal remains of a hippo calf showed evidence of a broken leg, which is thought to have been caused from the animal trying to free itself from a tether. This isn’t the only tether related injury that was discovered at the site; an antelope and a cow also showed similar injuries. The excavations at the Hierakonpolis site also revealed the remains of two elephants, two crocodiles, a leopard, and nine other exotic species. It is thought that the burial ground near to the Nile is the only archaeological evidence of such a wide assortment of zoo animals within ancient Egypt.

Wim Van Neer, a zooarchaeologist from the Royal Belgian Institute of Natural Sciences, noted that the ancient zookeepers “clearly had difficulty maintaining these animals”. The analysis of the skeletal remains showed that “the practical means of keeping animals in captivity were not so sophisticated as nowadays,” which would account for the numerous injuries sustained by the animals. The animals’ injuries showed signs of healing, which suggests that they were kept in captivity for a further several weeks or longer, rather than being killed immediately after obtaining them.

It is thought that the burial ground near to the Nile is the only archaeological evidence of such a wide assortment of zoo animals within ancient Egypt. ©Renee Friedman

It is thought that the burial ground near to the Nile is the only archaeological evidence of such a wide assortment of zoo animals within ancient Egypt. ©Renee Friedman

It is argued by Richard Redding, an archaeologist of the University of Michigan’s Kelsey Museum, that the animals’ struggle whilst being captured could have led to the injuries. Van Neer agrees that some of the injuries could have been caused by the struggle, but the forty-plus broken hand and feet bones observed on the baboon remains are just “too numerous to be due to capture”. Van Neer also pointed out that an escaping baboon would have been more likely to break the long bones rather than the metatarsals and metacarpals, whilst escaping the capturers. It is also stated that the baboon remains from more recent tombs display fewer signs of harsh treatment, which may be due to the ancient zookeepers developing better animal keeping techniques.

References:

Van Neer, W. 2015. International Journal of Osteoarchaeology, 25:3. Pg 253-374.

If you’re new to the realm of archaeological, anthropological and forensic sciences (AAFS), or are a student needing sturdy and reliable references, or wondering “what archaeology or anthropology textbooks to buy? Check out our new ‘Useful Literature’ page!

Quick Tips: Identifying Dental Diseases – Dental/Enamel Hypoplasia.

In our previous Quick Tip post on identifying dental diseases, we gave a basic overview on the different diseases that are observed. If you haven’t read it, you can find it by clicking here.

Dental hypoplasia is a condition that affects the enamel of a tooth. It is characterised by pits, grooves and transverse lines which are visible on the surface of tooth crowns. The lines, grooves and pits that are observed are defects in the enamels development. These defects occur when the enamel formation, also known as amelogenesis, is disturbed by a temporary stress to the organism which upsets the ameloblastic activity. Factors which can cause such stress and therefore disrupt the amelogenesis include; fever, malnutrition, and hypocalcemia.

Figure 1: An example of linear enamel hypoplasia.

Figure 1: An example of linear enamel hypoplasia.

It has been noted that enamel hypoplasia is more regularly seen on anterior teeth than on molars or premolars, and that the middle and cervical portions of enamel crowns tend to show more defects than the incisal third. This is due to the amelogenesis beginning at the occlusal apex of each tooth crown and proceeding rootward, towards where the crown then meets the root at the cervicoenamel line.

Figure 2: Anatomy of a tooth. Note the top third is known as either the occlusal third if in molars, or the incisal third when the tooth is an incisor or canine.

Figure 2: Anatomy of a tooth. Note the top third is known as either the occlusal third if in molars, or the incisal third when the tooth is an incisor or canine.

By studying these incidents of enamel hypoplasia within a population sample, we can be provided with valuable information regarding patterns of dietary stress and disease that may have occurred within the community.

References:

Lukacs, J.R. 1989. Dental paleopathology: methods for reconstructing dietary patterns. In M.Y. Iscan and K.A.R. Kennedy (eds), Reconstruction of life from the skeleton. New York, Alan Liss, pp. 261-86.

Ubelaker, D.H. 1989. Human Skeletal Remains: Excavation, Analysis, Interpretation (2nd Ed.). Washington, DC: Taraxacum.

White, T.D., Folkens, P.A. 2005. The Human Bone Manual. San Diego, CA: Academic Press. Pg 392-398.

This is the second post of the Quick Tips series on identifying dental diseases. The next post in this series will focus on how to identify dental caries and highlight the cause of this dental disease.

To read more Quick Tips in the meantime click here, or to learn about basic fracture types and their characteristics/origins click here!

Textbook of the Week: Forensic Archaeology Advances in Theory and Practice.

Every week we highlight one archaeology/anthropology textbook from our suggested readings, a full list of our suggested resources can be found here, on our Useful Literature page.

5191V5QW55L._SY344_BO1,204,203,200_

Forensic Archaeology Advances in Theory and Practice (UK/Europe Link)
Forensic Archaeology Advances in Theory and Practice (US/Worldwide Link)
by John Hunter & Margaret Cox. Rating: ****

“This text book is easy to follow, so perfect for beginners or first year students. It uses numerous case studies and illustrations to show you how to apply it in practice, meaning that you can fully grasp what situation to use it in and how to correctly apply it.

If you’re a student – check out our ‘Quick Tips’ posts where we breakdown topics of AAFS into bite-sized chunks. We’re currently covering how to age and how to estimate the biological sex of skeletal remains, and also how to identify dental diseases!

Quick Tips: Identifying Dental Diseases – The Basics.

Quick Tips: Identifying Dental Diseases – The Basics.

In a previous Quick Tip post we briefly touched on teeth in anthropology/archaeology by providing a basic answer to the question, “What can an anthropologist tell from the examination of teeth?”, which can be found by clicking here.

“No structures of the human body are more likely to disintegrate during life than teeth, yet after death none have greater tenacity against decay” – Wells, 1964.

Teeth are the hardest and most chemically stable tissues in the body; because of this, they’re sometimes the only part of a skeletal remain to withstand the excavation. Even though teeth are the most robust structures of a skeleton, there are numerous diseases that can affect them. This is due to teeth interacting directly with the environment and therefore are vulnerable to damage from physical and biological influences. It is from these diseases, that archaeologists and anthropologists can learn a wealth of information on an individual or population’s diet, oral hygiene, dental care and occupation.

Lukacs, 1989, classified dental diseases into four categories, which are;

  • Infectious – This is one of the more common disease types found within archaeological populations. An example of an infectious dental disease is caries.
  • Degenerative – This is where the dental disease occurs over time as the person ages. An example of degenerative dental disease includes recession of the jaw bone.
  • Developmental –These dental diseases develop due to environmental and lifestyle factors, such as malnutrition. An example of this type of disease is enamel hypoplasia.
  • Genetic – These types of diseases are caused by genetic anomalies.

The main dental diseases that are observed within an archaeological or anthropological context are;

If the dental disease listed above is a link, it means that I have already covered it in an individual blog post and can be found by following the link.

Each of these dental diseases has their own characteristics which allows them to be easily distinguished from one and another. In the next few posts of this Quick Tips series, we will be focusing on each dental disease individually, and highlighting their aetiology and physical characteristics.

References:

Buikstra, J.E., Ubelaker, D.H. 1994. Standards for Data Collection From Human Skeletal Remains. Fayetteville, Arkansas: Arkansas Archaeological Survey Report Number 44.

Lukacs, J.R. 1989. Dental paleopathology: methods for reconstructing dietary patterns. In M.Y. Iscan and K.A.R. Kennedy (eds), Reconstruction of life from the skeleton. New York, Alan Liss. Pg 261-86.

Ubelaker, D.H. 1989. Human Skeletal Remains: Excavation, Analysis, Interpretation (2nd Ed.). Washington, DC: Taraxacum.

Wells, C. 1964. Bones, bodies and disease. London, Thames and Hudson.

White, T.D., Folkens, P.A. 2005. The Human Bone Manual. San Diego, CA: Academic Press. Pg 392-398.

This is the first post of the Quick Tips series on identifying dental diseases. The next post in this series will focus on how to identify dental/enamel hypoplasia and highlight the cause of this dental disease.

To read more Quick Tips in the meantime, click here, or to learn about basic fracture types and their characteristics/origins click here!